Task-Aware Location-Based Services for
Mobile Environments

FP7-SME-207-1-222292-TALOS

Content Aggregation
D1.1

Deliverable lead contractor: IMIS - R.C. ATHENA

Panagiotis Georgantas pgeor@imis.athena-innovation.gr
Dieter Pfoser pfoser@cti.gr

Due data: 30.9.2009
Actual submission date: 13.11.2009

Abstract

This report summarizes the results of the Work Package “Context
Aggregation” (WP1) of the TALOS project. A context aggregator has
been implemented that can capture, analyze and aggregate the
user’s contextual attributes such as space and time.

Copyright © 2009 TALOS consortium - http://www.talos.cti.gr

Research Academic Computer Technology Institute, Greece

Fraunhofer Gesellschaft, Institute for Software and Systems Engineering, Germany

Institute for the Management of Information Systems / Athena Research and Innovation Center in
Information, Communication and Knowledge Technologies, Greece

Katholieke Universiteit Leuven, Belgium

Michael Miiller Verlag, Germany

Talent SA, Greece

WiGeoGIS, Austria

D1.1 Context Aggregation TALOS

D1.1.Context Aggregation_v2.doc 2 of 27

D1.1 Context Aggregation TALOS

Table of Contents

1 INTRODUGCGCTION . .ooiiieeeeeeesssnnnnns 5
2 OBJECTIVES CHANGE..........ccccccieeceesssssssnnnssssssssssssssssnnnnnnnnnnnnnnnnnsssssnnnnnnnnnnnns 5
3 EVALUATION OF APPROXIMATE POSITIONING TECHNIQUES........cctvemtaesns 7
3.1 (001170 1 7
3.2 FINGERPRINTING st sttt s ssssssssnnnnssesssnnnsssesssesssnsssssessssssssesssssssssesssessssssssssnsssssrnes 8
3.3 BN A LU AT ION 1ttt st tetseesssetssnnsssesssnssnssssssssssnssssesssnsssssessssssssssssssssnnssssssnnnsnnsnes 9
3.4 (@00 N[/ (0] =, 12
4 ARCHITECTURE AND IMPLEMENTATION.....ccotttttsssssssssssssssssnssnssssnsnnnnnnnnnnnn 13
4.1 N Ll =T 1 2 =3 13
4.2 IMPLEMENTATION DETAILS 4ttttttsseeesssssnnsnssnsnssnnns 14
B COMPONENT S - iinnnsssnnnsnnnns 16
5.1 APPROXIMATE POSITIONING SUPPORT TOOLS utttiiiiiississssrssssssssssssisssssssssssssssssssss 16
5.2 CONTEXT AGGREGATOR 1ttt tttttstssssssssssssssssssssssssssssssssssssssstsssssiasssssssssssnnns 20
CON CLUSTION S .. i sssnnns 25
REFERENCES.........ccciciiiiiiessssssssssssssssssssssssssssssssssssnsnnnnnsssssssssnnnnnnnnnnnnnnnnnnnnnnnnnnns 26
A P P EIN D X ..eetuuuuunnnsesssssnssssssssssssssssss s sss s s s s s s s s 5o oo s s 8888 0assnssssssssssnnnssnnnnnns 27

D1.1.Context Aggregation_v2.doc 3 of 27

D1.1 Context Aggregation TALOS

D1.1.Context Aggregation_v2.doc 4 of 27

D1.1 Context Aggregation TALOS
1 Introduction

This report summarizes the results of the Work Package “Context Aggregation”
(WP1) of the TALOS project. A context aggregator has been implemented that
can capture, analyze and aggregate the user’s contextual attributes such as
space and time. The implementation of a position estimation framework enables
the user to estimate her position in a completely autonomous manner and
without the requirement of any carrier or other third-party server intervention,
both in outdoors and indoors environments. The results of this work are based
on a wide and detailed analysis and evaluation of approximate positioning
techniques that exploit standard GSM networks and WiFi hotspots. A suite of
tools that support the operation of the position estimation framework has also
been implemented.

The appendix includes the following scientific article that showcases and
evaluations the use of soft positioning technology as a replacement for GPS when
tracking vehicle in a road network. The article uses pre-existing map-matching
technology developed by CTI for GPS tracking of vehicles and in this case applies
to WiFi-based positioning.

Spiros Athanasiou, Panos Georgantas, George Gerakakis, Dieter Pfoser:
Utilizing Wireless Positioning as a Tracking Data Source. In Proc. SSTD
conf., pp. 171-188, 20009.

2 Objectives Change

In the original TALOS proposal it was stated that a Java 2 Mobile Edition (J2ME)
application would be implemented that would use approximate positioning
techniques for standard GSM networks and WiFi hotspots. Our contribution would
lie in the development of a positioning technique, so that users will not need
specialized hardware (i.e. GPS) in order to know their location. At that time, our
contribution was state of the art, since only two companies on a global scale
offered a similar solution (Skyhook Wireless and Ekahau).

However, when our work on Context Aggregation started, WiFi positioning
technologies were already widely available. Platforms like Apple’s iPhone and
Google’s Android incorporated the services of Skyhook Wireless, and applications
like Google Gears and Firefox 3.5 Location Services were offering Wireless
Positioning Services through an API. The semi-ubiquitous and game-changing
nature of Apple and Google product offerings demanded a rethink of our original
proposal towards the benefit of the project and the participating SMEs.

Therefore, in order to create a competitive edge for the SMEs, we shifted our
attention towards the creation of a Wireless Positioning Service for WiFi hotspots
that can be applied in both outdoors and indoors scenarios and that will allow the
client’s autonomous operation. As far as indoors position estimation is
concerned, it allows the user to find her precise location within a museum or a
shopping mall. At the time of writing, none of the aforementioned platforms
comes with such capabilities. On the other hand, autonomous offline operation,
provides another significant benefit for the SMEs, since existing positioning
services require an Internet connection, which is typically not available for
tourists in a foreign country due to forbidding (roaming) data tariffs.

Furthermore, both Apple’s iPhone and Google’s Android were paradigm-shifting
devices and showed a new direction for the market of mobile devices in terms of
capabilities (large touchscreens, integrated app stores, UI design). Therefore we
moved away from the initially chosen Java 2 Mobile Edition platform and chose
Apple’s iPhone as our implementation platform judging it the most stable and

D1.1.Context Aggregation_v2.doc 5 of 27

D1.1 Context Aggregation TALOS

promising at that time. Our decision was confirmed by the direction the mobile
market is heading to (Nokia, SonyEricsson, Motorola), the success of Apple’s
mobile platform (iPhone 3G/3GS), and the (still) unpolished nature of Google’s
Android.

D1.1.Context Aggregation_v2.doc 6 of 27

D1.1 Context Aggregation TALOS
3 Evaluation of Approximate Positioning Techniques

Wireless Positioning Systems (WPS) provide a position estimate based on the
radio signals received at a given location (measurement), and a known radio
map of the environment. For example, in the case for 802.11 (WiFi) wireless
networks, the measurement consists of a set of the visible access point ids
(BSSID), and their corresponding received signal strength (RSS!). The
measurement is then compared to the radio map through a distance metric, and
a position estimate is calculated.

Different wireless positioning algorithms exist, which imply different forms and
means to create the radio maps, as well as distance metrics to provide an
estimate. In all cases, the radio maps for a given region are produced by training
data, typically collected through wardriving. Wardriving is the process of
massively collecting geocoded RSS measurements when driving through a
certain geographic area. For a given measurement period (e.g., 5sec), we
perform a scan of the available radio signhals in the environment and obtain the
position of this scan through GPS.

The vast majority of the WPS algorithms that can be found in the relative
literature can be classified in one of the two following classes of WPS algorithms,
centroid and fingerprinting. For both classes, numerous approaches and
variations exist, depending on the wireless network (e.g., [8, 7, 9, 4, 10]) and
environment (e.g., indoors/outdoors [6, 1, 2, 5]). We have either adopted these
variations as is, or properly adapted and extended them to suit our case.

3.1 Centroid

Centroid is the simplest and the fastest method for wireless positioning. In
centroid, the radio map consists of a set of the available Beacons and their
positions, i.e. for WiFi, <BSSID, X, Y>. Consequently, centroid depends on
having the true locations of the Beacon positions. Since this information is
practically not available, nor feasible to produce, we must create the radio map
from the training data, essentially estimating the position of the Beacons.
Therefore, for each Beacon in the training data, we find all the positions it was
visible, and estimate the Beacon’s position as the arithmetic mean of these
coordinates. Having established the radio map, a position estimate is provided in
a similar manner. Given a measurement from the environment where certain
Beacons are visible, we calculate the arithmetic mean of their coordinates, as
provided by the radio map.

In order to improve accuracy when creating the radio map and/or calculating an
estimate, we adopted weighted centroid from [3] and proposed two new
heuristics: k-max and thresholds. Specifically:

Weighted. The simple arithmetic mean is substituted by a weighted arithmetic
mean, where the weight is based on the RSS.

K-max. We apply the arithmetic mean on only the k Beacons with the lowest
RSS (low RSS values correspond to strong received signal).

Thresholds. We define three thresholds t;<t,<t; which split the RSS space in
four regions. If there are Beacons which fall in the first threshold (RSS<t,),
then we use only them in the arithmetic mean and ignore the rest. If there no
Beacons in the first threshold, we use the ones in the second (t;<RSS<t;), and
so forth. In case there are Beacons only in the last threshold (t;<RSS), then

1 Note that we always refer to the absolute value of RSS.

D1.1.Context Aggregation_v2.doc 7 of 27

D1.1 Context Aggregation TALOS

the algorithm does not provide an estimate since we consider the
measurement to provide highly inaccurate readings.

Consequently, for centroid, there are a total of 16 different combinations of
techniques to create the radio map and to provide an estimate: 4 to create the
radio map, and 4 to provide an estimate. A specific centroid technique is be
denoted as centroid <radio map, estimation>, where radio map and estimation
can be one of the following: arithmetic mean (am), weighted (w), k-max (k=n),
and thresholds (t;-t,-t3). For example, centroid <k=2, 60-70-80>, means that
the radio map was built with the k-max technique with k=2, and the estimation
is provided with the thresholds technique with t;=60, t,=70, and t5=80.

3.2 Fingerprinting

Fingerprinting assumes that the Beacons and associated RSS observed at a
particular location are stable over time. Consequently, a measurement at a given
location, i.e., the list of visible Beacons and RSS, can be considered as the
unique fingerprint of that location. Thus, in fingerprinting, the training data
themselves comprise the radio map.

To estimate the position, the algorithm calculates the Euclidean distance in the
signal strength space between the current fingerprint and all available
fingerprints in the radio map that contain the same Beacons. It then selects the
k-nearest fingerprints in terms of distance, and returns as an estimate the
arithmetic mean of their coordinates. This comparison is possible only if the
current fingerprint and the fingerprints in the radio map contain exactly the same
Beacons. Otherwise, calculating their distance in the Euclidean space is not
possible.

However, in realistic conditions the current fingerprint may not contain exactly
the same Beacons with the ones in the radio map. For example in the case of
WiFi, some of the APs may have been turned off or removed, new APs may have
been deployed, or the network interface may not provide APs with an RSS below
a given threshold.

To account for this situation, we calculate the distance between the current
fingerprint and the ones in the radio map based on a subset of common
Beacons. In particular, we extended the algorithm in [6] so that the subset is
defined by two parameters:

[: We compare the current fingerprint with fingerprints that contain at most |
less Beacons. For example, suppose the WiFi scan <(AP;, RSS;), (AP, RSS,),
(AP3, RSS3)>. For /=1, a fingerprint <X, Ya, (AP1, RSS;), (AP,, RSS;)> would
be included in the position estimation, in contrast with <xp, y», (AP2, RSS,)>
which would be ignored since there are two missing APs.

m: We compare the current fingerprint with fingerprints that contain at most m
more APs. For example, suppose the WiFi scan <AP;, RSS;>. For m=1, the
fingerprint <x,, ya, (AP;, RSS;), (AP,, RSS,), (AP5;, RSS;3)> would be excluded
from the estimation due to the two extra APs.

Consequently, fingerprinting is modified as follows. The algorithm calculates the
Euclidean distance in the signal strength space between the current fingerprint
and all fingerprints in the radio map that contain at most / less and m more APs.
It then selects the k-nearest fingerprints in terms of distance in the signal space,
and returns as an estimate the arithmetic mean of their coordinates. As a result,
there are many instances of the fingerprinting algorithm based on different
parameters of k, /, and m. We use the notation fingerprinting <k, I, m> to denote
a specific instance of the fingerprinting algorithm.

D1.1.Context Aggregation_v2.doc 8 of 27

D1.1 Context Aggregation TALOS
3.3 Evaluation

3.3.1 Experimental Setup

We evaluated the aforementioned Wireless Positioning techniques in terms of
both accuracy and coverage through extensive experimentation.

3.3.2 Data Collection

For outdoors evaluation we collected data in the Zografou neighborhood in
Athens, Greece. The area was selected (i) due to its geographical characteristics
(mix of flat areas and hills), (ii) varying levels of WiFi AP density (0-15 APs/m?),
(iii) typical urban structure with a mix of shops and residential areas, and (iv)
fluctuating traffic.

Data was collected through wardriving over a period of two months in an area
covering approximately 100,000m?. For data collection typical road speeds and
driving habits were maintained. Driving speeds varied from Okph (stationary for
more than 5mins) to 70kph. Concerning the chosen wardriving approach, instead
of multiple passes from each road segment (which may reveal more APs,
produce more samples for an AP, etc.), we performed at most one pass. This
implies that the collected data set may be less complete than it could be, but
resembles a realistic /arge scale mapping effort to create the radio map of any
given region.

For indoors evaluation we chose as experimentation locations two work areas.
They were selected due to the different characteristics of their WiFi networks
topology, few access points per floor for the first one and many access points in
various locations for the second.

In contrast to an outdoors scenario, where the creation of an extensive and
detailed radiomap is prohibitive due to the large geographical areas to be
covered, the small size of an indoors location allows the increase of the sampling
rate during data collection up to a several fingerprints per square meter, thus
providing a complete radiomap of the environment.

3.3.3 Outdoors Evaluation

The following interesting observations can be made with respect to the data
collected in our outdoors experimentation. First, the total humber of unique APs
discovered was 2,184, and on average we observed 5 APs for each sampled
location. Considering the covered geographic area, this yields 2.1 APs per 100m?.
Second, in most cases when WiFi was not available, then GPS was not available
as well (e.g., under a bridge, near a large building). Third, almost all APs were
available 24/7. Overall, these facts confirm the increased penetration of WiFi
networks in urban environments and constitute a foundation for the proliferation
of WiFi-based WPS as a ubiquitous and dependable alternative to GPS.

We used our training data to create the radio maps and the testing data to
calculate the position estimates based on these maps. We experimented with all
permutations of means described in 3.1 and 3.2. For each point in the testing
data, the position estimate provided by each WPS algorithm for specific
parameter settings is compared to the respective GPS measurement taken
(ground truth).

Table 1 shows the results concerning accuracy using a ranking based on the
average error of the WPS estimates. In addition, for each result its respective
coverage (i.e., the percent of times the technique can provide an answer) is
stated. For each class of WPS algorithms (centroid, fingerprinting) the best three
accuracy achieving parameter settings are presented. What can be observed is
that given the right parameters, fingerprinting achieves the best positioning

D1.1.Context Aggregation_v2.doc 9 of 27

D1.1 Context Aggregation TALOS

accuracy (25.24m). However, the results overall only differ slightly. What is of
interest is the respective coverage that can be achieved with each method. For
example, the best performing fingerprinting method has a coverage of 56%, i.e.,
the technique cannot provide a position estimate 44% of the time. This behavior
is caused by the WPS algorithms themselves and by our wardriving approach to
collect training data. For example, centroid<k=1, 60-80-90> provides an
estimate based only on APs with RSS below 60. The estimate will be more
accurate because the required RSS threshold is low, but since this is also highly
selective, there are many instances where RSS below 60 is not available.

Table 1. WPS accuracy compared to GPS

Average Error | Coverage
(m) (%)
Fingerprinting <6-1-5> | 25.24 56
Fingerprinting <6-1-4> 26.40 54
Fingerprinting <6-1-6> 26.57 56
Centroid <k=1, 60-70-]26.61 74
80>
Centroid <k=1, 65-80-|26.65 82
80>
Centroid <k=1, 75-85-]26.82 64
90>

Table 2 ranks WPS techniques based on their coverage values. As expected, the
techniques producing the best coverage underperform in terms of average error.
To desigh an actual wireless positioning system one needs to consider this trade-
off between accuracy and coverage, i.e., is providing a more accurate estimate
better than always providing a crude estimate?

Table 2. WPS coverage

Average Error | Coverage
(m) (%)
Centroid <k=1, weighted> | 35.52 94
Centroid <k=1, 70-80-|47.11 93
85>
Centroid <k=1, 65-75-]47.15 92
80>
Fingerprinting <6-2-6> 36.45 82
Fingerprinting <2-4-6> 51.53 81
Fingerprinting <6-6-1> 48.93 78

One conclusion to the above question is to provide a hybrid WPS technique for
centroid and fingerprinting. In particular, we obtain an estimate from the best
performing technique in terms of accuracy, but should the said technique not be
available (coverage), we obtain an estimate from the technique with the best
coverage. These hybrid WPS techniques have high coverage (> 96%) with an
acceptable increase in average error (cf. Table 3).

D1.1.Context Aggregation_v2.doc 10 of 27

D1.1 Context Aggregation TALOS
Table 3. Average error and coverage of the hybrid WPS techniques

Average Error | Coverage

(m) (%)
Hybrid Centroid 32.77 99
Hybrid 28.40 96
Fingerprinting

3.3.4 Indoors Evaluation

In an indoors environment GPS derived location is not available since GPS signal
is blocked from buildings. Therefore in order to estimate the user’s position a
different reference system is required. In our evaluation we used the floor plan of
each location. During data collection, each time a sample was taken, the user
marked his current location on the floor plan. The estimated position calculated
during the evaluation was then compared to the user provided location, using
that as the “ground truth”.

The detailed radiomap available in indoors environments assures that we have
100% coverage in all cases. Moreover, relevant literature indicates that given the
dense radiomap containing fingerprints for practically every position, the
technique that best exploits this information providing more accurate results is
Fingerprinting [1, 3]. Centroid approximates the position using the locations of
visible APs, which are rather sparse when compared to the density of the
fingerprint sampling. Therefore, even in its weighted permutation, it fails to fully
exploit the extra information provided by the detailed radiomap of the
environment. Fingerprinting on the other hand, based on a similarity search
between the current measurement and all the available fingerprints in the
radiomap can provide very accurate results. The more the fingerprints, the more
chances are to find several very close to the current measurement, thus
indicating their location as the correct one.

Our evaluation also showed that the increased accuracy of the fingerprinting
algorithm heavily depends on the setup of the indoor environment. Table 4
shows for each location the average error in meters of the Fingerprinting
algorithm.

Table 4. Average indoors error

Average Error
(m)

Location 1 | ~3m

Location 2 | ~6m

At the first location were the evaluation took place there are only 1-2 Access
Points per floor. Most of the fingerprints in the produced radiomap contained
mainly these APs with relatively weak signal. Taking into consideration that, as it
is indicated in the literature, RSS’s decrease is not linear to the distance from the
Access Point and that more distant measurements provide less credible
conclusions about their distant from the AP (see Figure 1), we can see that most
locations in a distance from the APs will provide similar fingerprints.

In contrast, at the second location many Access Points are available in different
locations, covering all the areas with various signal strengths, depending on their
distance from each location. This setup produced a radiomap with a wide variety

D1.1.Context Aggregation_v2.doc 11 of 27

D1.1 Context Aggregation TALOS

of fingerprints and with each fingerprint having several APs with strong signal,
thus being very characteristic of its position.

Figure 1. Measured RSS a afunction of the distance from AP

3.4 Conclusions

The evaluation of the approximate Wireless Positioning Techniques has shown
that in outdoors scenarios the Fingerprinting algorithm provided better accuracy
with centroid being a very close second. Taking into account though the
significantly increased computational complexity of the fingerprint algorithm and
the usually limited computational resources of mobile devices, centroid is the
best choice for outdoors.

As far as indoors environments are concerned, our evaluation showed
fingerprinting is the algorithm that can achieve the desired accuracy.

D1.1.Context Aggregation_v2.doc 12 of 27

D1.1 Context Aggregation TALOS
4 Architecture and Implementation

4.1 Architecture

The applications implemented in the context of Work Package 1 can by divided in
two packages:

Approximate Positioning Tools. A set of applications was implemented in
order to assist the creation of the necessary radio map, either by
wardriving process in outdoors scenarios or for detailed mapping in indoor
scenarios.

Context Aggregator. The iPhone library that provides contextual attributes
to applications.

4.1.1 Approximate Positioning Support Tools
The Approximate Positioning Support Tools consist of the following components:

iwscand. Iwscand is responsible for gathering the information about the
detectable Access Points and their RSS and accomplishes that by using the
Linux Wireless Extensions [12] library. It also retrieves the current GPS
coordinates by contacting the GPS daemon [13].

IwscanClient. A Library responsible for communicating with iwcand,
parsing the supplied xml information and supplying it as in memory
objects.

WPSurvey. This is the main application, a GUI that allows the user to
create the radiomaps for the Wireless Positioning process. It uses
iwscanclient to connect to iwscand and retrieve the necessary information.

WPSurvey
GPS daemon

i <jwscan> .
iwscand IwscanCient

Linux Wireless
Extensions

Figure 2. Approximate Positioning Support Tools Architecture

D1.1.Context Aggregation_v2.doc 13 of 27

D1.1 Context Aggregation TALOS

WPSurve wscanClient iwscand apsd linwx wireless

| T

User Request | |
— get APs+gps |
|

T
|
|
|
> 1 geteps

T
|
|
|
get APs+gps I
|
|
returmn GPS :
K=~~~ gtAPs :
|
APS+GPS (xml) return APs
______ T ——

APS1GPS (C# objects) | < T :
- - | |
| | | |

Figure 3. Approximate Positioning Support Tools Message exchange

4.1.2 Context Aggregator
Context’s Aggregator consists of the following components:

ContextAggregator: This is the main class that provides the contextual
attributes to requesting applications. In order to retrieve the necessary
attributes it uses either existing components of the iPhone framework or
one of the following components.

iWPS. The library that implements the Approximate Wireless Positioning
operations in the mobile client.

CTXTSettings. The component responsible for storing and retrieving user
and application settings.

WeatherProvider. This component retrieves weather forecast
information from the web.

iWPS !

CTXTSettings [—

ContextAggregator Demo Application

WeatherProvider |

iPhone
Franework

Figure 4. Context Aggregator Architecture

4.2 Implementation Details

All the Approximate Positioning Support Tools were implemented for the Linux
Platform due to the unrestricted and standardized access to the information
regarding the wireless connection. Though Iwscand which was implemented in C,
IwscanClient and WPSurvey components were implemented in C# using the
Mono Framework[14] and the Gtk# library[15] which enable the portability of
these components to the Windows platform.

D1.1.Context Aggregation_v2.doc 14 of 27

D1.1 Context Aggregation TALOS
All Context Aggregator’'s components were implemented in Objective-C for the
iPhone Framework 3.1.2. It should be noted that due to the fact that the iPhone
platform does not allow the use of external libraries or background processes the
Context Aggregator’s source code must be incorporated in to the source of the
TALOS iPhone application.

D1.1.Context Aggregation_v2.doc 15 of 27

D1.1 Context Aggregation TALOS
5 Components

In this section the Context’s Aggregator components are presented in more
detail. Complete description of the implementation for its component can be
found in the documentation of the source code.

5.1 Approximate Positioning Support Tools

5.1.1 Iwscand

Iwscand runs as daemon that listens to a user specified port and upon requests
returns the gather WiFi and GPS information in xml format. Below you can see
an example of the returned xml document:

<iwscan>
<ap essid="AP1l" bssid=" 00:15:56:D0:1A:CB"
qual="50" gualMax="100"
noise="-10" noiseMax="0"
signal="-70" singalMax="0"/>
<ap essid="AP2" bssid=" 00:14:Cl:1E:50:86"
qual="70" gqualMax="100"
noise="-10" noiseMax="0"
signal="-61" singalMax="0"/>
<gps latitude="37.9989" longitude="23.76657"” altitude="194.7"
</iwscan>

daemon is Iisterlwing at using a TCP socket and send the message “pos” followed
by a new line character.

When called, iwscand uses the first command line argument as port it should
listen to.

5.1.2 IwscanClient

IwscanClient is used as a C# library (dll) so that other C# applications can easily
retrieve the information provided by Iwscand. In order to avoid unnecessary
multiple connections from the application to iwscand it initiates a shared static
instance which requests information for GPS and WiFi scans and return it as an
Iwscan C# in memory object.

Applications can access the aforementioned functionality by calling the following
static method:

Iwscan IwscanClient.scan/()

IwscanClient read its configuration using C#’s CofigurationManager’s App.config
xml file. More specifically, applications using IwscanClient must have the
following settings defined in the <appSettings> section of their App.config:

iwscand-address: The IP address iwscand is listening to.
iwscand-port: The port iwscand is listening to.
iwscand-timeout: Timeout waiting for iwscand responce (in milliseconds).

An example App.config file follows:

<appSettings>
<add key="iwscand-address" value="127.0.0.1"/>
<add key="iwscand-port" value="5000"/>
<add key="iwscand-timeout" wvalue="2000"/>
</appSettings>

D1.1.Context Aggregation_v2.doc 16 of 27

D1.1 Context Aggregation TALOS

5.1.3 WPSurvey

WPSurvey is the GUI users can use in order to scan the environment for WiFi
networks, combine the measurements with their current location and create the
radiomap that will be used by the positioning component of the mobile
application.

Figure 5. WPSurvey - Outdoors mapping

Data collections are logically organized “Surveys”. The collected data from
various surveys is stored in a user defined Sqlite [16] database. The data can
then be processed and exported to another Sqlite database compatible with the
schema used by the Approximate Positioning component running in the mobile
device (iPhone).

There are two types of surveys available, outdoors and indoors. Outdoors
surveys require the existence of GPS coordinates in each acquired scan from
iwscand in order for them to be recorded. They also support automatic scanning
in regular user defined time interval. Finally when exporting data to a database
to be used in the iPhone it uses the centroid algorithm in order to estimate the
positions of the available Access Points. All three variations of the centroid

D1.1.Context Aggregation_v2.doc 17 of 27

D1.1 Context Aggregation TALOS

algorithm have been implemented and which ne i used is configurable from the
WPSurvey settings file. Figure 5 shows a screenshot of the main window of
WPSurvey for an outdoors survey.

Figure 6. WPSurvey - New map

Indoors surveys on the other hand do not require the use of GPS coordinates
since GPS signal is not available indoors. Instead the specification of a map
(usually a floor plan) of the environment is required. For ease of use and for
greater compatibility the map is provided as a Portable Network Graphics (PNG)
picture. The user must specify reference coordinates for the provided map (see
Figure 6). These coordinates need not be real GPS coordinates, they can be an
arbitrary reference system, but it required that they follow the standard
geographical orientation, that means the point (startX, startY) is the left lower
point of the map. The provided map is saved in the database and a lower
resolution version of it is exported to the iPhone format database along with the
data. When exporting indoors survey’s data no processing is applied, the
fingerprints are simply copied into the destination database since the
Fingerprinting technique uses the raw radiomap.In indoors surveys, in order for
the user to perform a scan of the environment he must click on a point on the
provided map. The acquired scan is saved with its coordinates set as the

D1.1.Context Aggregation_v2.doc 18 of 27

D1.1 Context Aggregation TALOS

coordinates of map point the user clicked as derived from the maps reference
system. Figure 7 is a screenshot of the main window of WPSurvey for an indoors
survey.

e &1
TIF RSF

LT

P g

nd-ar

Tk e
Comoawad
T ol seinici)

a2
arn nsr
» J

"TE
Vi P

w47
a8 A

Figure 7. WPSurvey - Indoors mapping

WPSurvey reads the necessary configuration data wusing using C#'s
CofigurationManager’s App.config xml file. Apart from the required settings for
the IwscanClient library that were explained in 5.1.2. the following settings must
be defined:

CentroidMapCreationMethod: The Centroid permutation used when
exporting the radiomap for the Approximate Positioning library. The
possible values are:

o kmax
o thresholds
o weighted

CentroidMapKmax: The value of the k parameter of the k-max
permutation of the centroid technique.

D1.1.Context Aggregation_v2.doc 19 of 27

D1.1 Context Aggregation TALOS

CentroidMapThresholdl, CentroidMapThreshold2,
CentroidMapThreshold3: The thresholds used by the threshold
permutation of the centroid technique.

iPhoneMapImageSizeX, iPhoneMapImageSizeY: The size to which the
map’s image is scaled down to when exported to the iPhone database.

logfile: The files were the application logs its operations.

DEBUG-LEVEL: Defines the verbosity of the applications log file. 0 stands
for errors only, values below 10 increase the verbosity, 10 means all
operations.

DefaultOpenPath: Defines the default path that is prompted to the user in
Open/Save operations.

An example App.config file that includes the parameters for IwscanClient follows:

<appSettings>
<add key="iwscand-address" value="127.0.0.1"/>
<add key="iwscand-port" value="5000"/>
<add key="iwscand-timeout" value="2000"/>
<add key="CentroidMapCreationMethod" value="kmax"/>
<add key="CentroidMapKmax" value="3"/>
<add key="CentroidMapThresholdl" value="60"/>
<add key="CentroidMapThreshold2" value="70"/>
<add key="CentroidMapThreshold3" value="80"/>
<add key="iPhoneMapImageSizeX" value="280"/>
<add key="iPhoneMapImageSizeY" value="320"/>
<add key="logfile" value="WPSurvey.log"/>
<add key="DEBUG-LEVEL" value="0"/>
<add key="DefaultOpenPath" value="/home" />
</appSettings>

5.2 Context Aggregator

5.2.1 ContextAggregator

The ContextAggregator class offers an single point access to all the available
contextual information provided from the other components. The information is
returned either as return values of ContextAggregator’'s methods or by calling
the appropriate “delegates” implemented by the requesting class. The following
context is offered by the Context Aggregator:

Current Location from the iWPS component. Relevant methods:
o startUpdatingLocation()
o stopUpdatingLocation()

Current weather and weather forecast from the Weather Component.
Relevant methods:

o updateWeather()
o getForecastForDay(date)
User or Application Settings. Relevant methods:
o getAppSettingForKey(key)
o getUserSettingForKey(key)
o setUserSettingForKey(key)

Current Date and Time. Relevant methods:
D1.1.Context Aggregation_v2.doc 20 of 27

D1.1 Context Aggregation TALOS
o getDate()
o getTime()
o getDateTime()

Settings from the mobile device, like the system model, version or name.
Relevant methods:

o getDeviceName()
o getSystemType()
o getSystemModel()

Some operations performed by the Context Aggregator take some time to finish
and return their results. Such operations are the position approximation that
needs to perform a scan for reachable WiFi APs or any network related
operations like getting the latest weather forecast. In order to avoid UI blocking
until these operations finish, they are implemented so that they run in their own
thread and upon completion they return the acquired result by calling a specific
method of the delegate object as that has been defined by the caller. The
methods that the delegate object’s class must implement in order to receive the
proper message are defined in an interface (protocol in Objective-C). So, in order
for a class to be eligible as delegate for a specific operation it must implement
the relative interface - protocol.

In our implementation two delegate protocols are used:

CLLocationManagerDelegate: This is the standard delegate protocol used
in iPhone’s framework for communicating with the built-in positioning
services. We chose to use the same protocol since a “familiar” protocol
makes the integration and use of the Context Aggregator much easier.

WeatherDelegate: This is the protocol that needs to be implemented in
order to receive information about the Weather forecast.

5.2.2 iWPS

This component is the largest component of the Context Aggregator. It uses the
techniques for Approximate Positioning using WiFi networks discussed in section
3 in order to estimate the user’s current position. The required radiomap is
stored in a Sqlite database as it exported from the WPSurvey tool. The database
can be either distributed with the application or downloaded from the web and
used offline.

D1.1.Context Aggregation_v2.doc 21 of 27

D1.1 Context Aggregation TALOS

Figure 8. Context Aggregator - Class diagram

In order to facilitate the use of the Context Aggregator component and its
integration into applications the implementation tries to offer familiar interfaces.
Therefore the standard classes defined in the Core Location API of iPhone’s
Framework were used. The component’s main class iWPSLocationManager
extends the iPhone’s native CLLocationManager. Also, as we explained in the
previous section, the delegate protocol used is CLLocationManagerDelegate,
again being a native iPhone protocol. This behaviour enables any application
using iPhone’s Positioning libraries to switch to iWPS simply by instantiating our
own Location Manager instead of the native one.

D1.1.Context Aggregation_v2.doc 22 of 27

D1.1 Context Aggregation TALOS

iWPS library uses WiFi networks in order to find the current location. However
the capability to acquire the location from iPhone’s built-in GPS hardware is
offered if the desired accuracy for the iWPS library is set to the value
kCLLocationAccuracyNearestTenMeters. Moreover, as it is illustrated in Figure
8 which shows the class diagram for the Context Aggregator Components, a
flexible architecture has been adopted that allows the extension of the
component for any other type of wireless network.

5.2.3 Weather

Weather information is retrieved from the free web service that is provided by
GeoNames [17] and returns the current weather for a given set of coordinates.
Using the current location provided from the positioning library the current
weather is returned without the need for any user input. In order to demonstrate
the flexibility of the Context Aggregator’s implementation and its independency
from the weather provider, we have also implemented another weather
provisioning service, this is from Yahoo![18].

5.2.4 Settings

This component is responsible for the retrieval of any Application or User setting.
Application settings are distributed with the applications; they are stored in an
xml file (iPhone’s plist) and have read-only access. User settings on other hand
are saved in the mobile device and can be changed at any time.

5.2.5 Demo Application

To demonstrate the operation of the Context Aggregator we have implemented a
demo iPhone application that retrieves context and displays it on the device’s
screen. Figures 9 and 10 show screenshots of the application when displaying an
outdoors and an indoors position.

D1.1.Context Aggregation_v2.doc 23 of 27

D1.1 Context Aggregation TALOS

Figure 9. Demo Application - outdoors Figure 10. Demo Application - indoors

D1.1.Context Aggregation_v2.doc 24 of 27

D1.1 Context Aggregation TALOS
Conclusions

A significant effort was spent in evaluating the current positioning techniques. An
experimental approach was adopted allowing extensive evaluation in realistic
everyday scenarios. The best performing algorithms in terms of accuracy,
coverage and performance were chosen and implemented in the Approximate
Positioning Library.

The original Work Package objectives were revised and altered in order to
preserve the project’'s competitive edge. Focus shifted to WiFi networks, indoors
positioning and innovative mobile devices like the iPhone.

A Context Aggregator was developed as a software component that captures the
user’'s contextual attributes. Several subcomponents have also been
implemented in order to provide the required information. A “soft-GPS”
component was created that enables the estimation of the current position
without the need for a specialized hardware (i.e. GPS) or the requirement for an
Internet Connection, in both indoors and outdoors environments. A suite of tools
was created to support the approximate positioning operations.

D1.1.Context Aggregation_v2.doc 25 of 27

D1.1 Context Aggregation TALOS

References

1.

10.

11.

12.
13.
14.
15.
16.
17.
18.

Bahl P., Padmanabhan V.N.: RADAR: An In-Building RF-Based User Location and
Tracking System. In : 9th IEEE Conference on Computer Communications, pp. 775-
784, 1EEE Press (2000)

Bahl, P., Padmanabhan, V.N., Balachandran, A.: Enhancements to the Radar User
Location and Tracking System. Technical Report, Microsoft Research MSR-TR-00-12
(2000)

Cheng, Y., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy Characterization for
Metropolitan-scale Wi-Fi Localization. In: 3rd International Conference on Mobile
Systems, Applications, and Services, pp. 233-245, ACM(2005)

Chen, M.Y., Sohn, T., Chmelev, D., Hightower, D.H.]., Hughes, J., LaMarca, A.,
Potter, F., Smith, I., Varshavsky, A.: Practical metropolitan-scale positioning for
GSM phones. In: 8th International Conference on Ubiquitous Computing. LNCS, vol.
4206, pp. 225-242, Springer (2006)

Hightower, J., Consolvo, S., LaMarca, A., Smith, I., Hughes, J.: Learning and
recognizing the places we go. In: 7th International Conference on Ubiquitous
Computing. LNCS, vol. 3660, pp. 105-122, Springer (2005)

Krishnan, P., Krishnakumar, A.S., Ju, W., Mallows, C., Ganu, S.: A system for
LEASE: Location estimation assisted by stationary emitters for indoor RF wireless
network. In: 23rd IEEE Conference on Computer Communications, pp. 1001-1011,
(2004)

LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn,
T., Howard, J., Hughes, J., Potter, F., Tabert. J., Powledge. P., Borriello. G., Schilit.
B.: Place Lab: Device Positioning Using Radio Beacons in the wild. In: 3rd
International Conference on Pervasive Computing. LNCS, vol. 3468, pp. 116-133,
Springer (2005)

Laitinen, H., Lahteenmaki. J., Nordstrom. T.: Database correlation method for GSM
location. In Proceedings of the 53rd IEEE Vehicular Technology Conference, pp.
2504-2508, IEEE Press (2001)

Otsason, V., Varshavsky, A., LaMarca, A., lLara, E.D.: Accurate GSM Indoor
Localization, in Proceedings of Ubicomp. LNCS, vol. 3660, pp. 141-158, Springer
(2005)

Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, I.,
Consolvo, S., Hightower, J., Griswold, W.G., Lara, E.D.: Mobility Detection Using
Everyday GSM Traces. In: 8th International Conference on Ubiquitous Computing.
LNCS, vol. 4206, pp. 212-224, Springer (2006)

Varshavsky, A., Chen, M., Lara, E.D., Froehlich, J]., Haehnel, D., Hightower, J.,
LaMarca, A., Potter, F., Sohn, T., Tang, K., Smith, I.: Are GSM phones THE solution
for localization?. In: 7th IEEE Workshop on Mobile Computing Systems and
Applications, pp. 20-28, IEEE Press (2006)

http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html
http://gpsd.berlios.de/

http://mono-project.com

http://www.mono-project.com/GtkSharp

http://www.sqlite.org/

http://www.geonames.org/

http://weather.yahoo.com/

D1.1.Context Aggregation_v2.doc 26 of 27

D1.1 Context Aggregation TALOS
Appendix

Spiros Athanasiou, Panos Georgantas, George Gerakakis, Dieter Pfoser:
Utilizing Wireless Positioning as a Tracking Data Source. In Proc. SSTD
conf., pp. 171-188, 20009.

D1.1.Context Aggregation_v2.doc 27 of 27

Utilizing Wireless Positioning as a Tracking Data
Source

Spiros Athanasiou', Panos Georgantasz, George Gerakakis?, and Dieter Pfoser'”

! Institute for the Management of Information Systems
"Athena" Research Center
G. Mpakou 17, 11524 Athens, Greece
{spathan, pfoser}@imis.athena-innovation.gr

2 School of Electrical and Computer Engineering
National Technical University of Athens
Greece, 15780
{pgeor, ggera}@dblab.ece.ntua.gr

2 RA Computer Technology Institute
Dvaki 10
Greece, 11524

pfoser@cti.gr

Abstract. Tracking data has become a valuable resource for establishing speed
profiles for road networks, i.e., travel-time maps. While methods to derive
travel time maps from GPS tracking data sources, such as floating car data
(FCD), are available, the critical aspect in this process is to obtain amounts of
data that fully cover all geographic areas of interest. In this work, we introduce
Wireless Positioning Systems (WPS) based on 802.11 networks (WiFi), as an
additional technology to extend the number of available tracking data sources.
Featuring increased ubiquity but lower accuracy than GPS, this technology has
the potential to produce travel time maps comparable to GPS data sources.
Specifically, we adapt and apply readily available algorithms for (a) WPS
(centroid and fingerprinting) to derive position estimates, and (b) map matching
to derive travel times. Further, we introduce map matching as a means to
improve WPS accuracy. We present an extensive experimental evaluation on
real data comparing our approach to GPS-based techniques. We demonstrate
that the exploitation of WPS tracking data sources is feasible with existing tools
and techniques.

Keywords: wireless positioning, map matching, tracking, FCD

1 Introduction

Incorporating travel times into road network information, i.e., travel time maps, is
an important prerequisite for a large number of spatiotemporal tasks. Examples
include shortest path computation, traffic avoidance, emergency response, etc.

Solutions typically rely on collected floating car data (FCD) that sample the overall
traffic conditions [16, 5] in a given region. FCD capture temporal variations in
achievable vehicle speeds throughout the road network. For example, speeds during
the rush-hour are considerably lower than during night traffic. Then, in a post-
processing step termed map-matching [4, 19], tracking data is accurately related to the
road network and travel times are extracted. It is critical that large amounts of FCD
are available for long periods of time and geography, so that the extracted speed
profiles are accurate. Currently, all methods use GPS for tracking the position of
vehicles.

1.1 The case for GPS vs. WPS

While GPS is the most popular positioning technique, it has several drawbacks.
First, it requires the use of specific hardware limiting the number of vehicles or users
that can collect and provide tracking data. Second, there are occasions where GPS is
inadequate (e.g., limited coverage, interference of high frequency electronic
equipment). This is especially true for “urban canyons”, i.e., areas in urban
environments where line-of-sight with the GPS satellites is obscured, leading to
inaccurate readings or no coverage at all. As demonstrated by LaMarca et al. [11], the
average availability of GPS in an urban environment is only 4.5% during a user’s
daily schedule. In contrast, wireless networks, such as WiFi and GSM, are available
on average 94.5% and 99.6% respectively. Third, the addition of extra integrated or
autonomous GPS modules lead to increased power consumption, and thus limit the
user’s mobility or application of GPS.

These drawbacks of GPS have led to the rise of Wireless Positioning Systems
(WPS), where the user location is estimated with the help of other, readily available
wireless networks. As a technology, WPS delivers less accurate results (e.g., ~40m
for WiFi/outdoors), but provides greater coverage characteristics (e.g., above 90% of
a user’s time). Further, WPS can be integrated in practically any computing device
that incorporates a wireless network interface, and with a negligible burden on the
interface’s power consumption. So while WPS is less accurate than GPS, for typical
everyday applications it can efficiently augment or even replace GPS.

Lately, WPS capable devices and applications are becoming a common place for
end users, with examples like the iPhone, Android, Google Gears, Mozilla Firefox
3.1, etc. In addition, the integration of WPS in GPS and WiFi chipsets (e.g., SiRF,
Broadcom, Texas Instruments) will result in a state where practically all mobile
devices will have WPS capabilities. This argument is a fact, rather than a prediction,
with great implications on spatiotemporal data management in general. In
combination with the emerging usage of geolocation Web APIs (e.g., W3C
Geolocation) we anticipate that in the near future there will be an abundance of
readily available WPS positioning data.

Consequently, the technical advance of WPS is leading to new challenges and
potential gains for numerous applications, where the scale and amount of positioning
data will require corresponding advances in algorithmic solutions. Further,
repurposing this sort of data by accommodating their particularities (e.g., varying

levels of accuracy, ubiquitous coverage, etc.) in order to extract hidden knowledge,
will be another area of great interest.

Our work is therefore extremely relevant in this newly established context, and
applied to the specific issue of creating travel time maps. Currently, the creation of
travel time maps from actual travel data is based solely on FCD. While this
guarantees the use of position readings of high accuracy, it also limits the availability
of such data for extended periods of time and geography. However, by successfully
exploiting WPS, we would have access to data (a) whose size is several orders of
magnitude greater, (b) temporally span bigger periods, and (¢) extend to larger
geographic areas. One could argue that WPS is only feasible in urban areas. While
this observation is true, it actually strengthens our argument; urban areas are exactly
where travel time maps are valuable resources for routing solutions.

1.2 Contributions

In this work, we advocate the use of WPS to complement and/or replace GPS
tracking data sources to produce travel time maps. This increases the potential number
of data providers and ultimately the quality of the resulting travel times. To the best of
our knowledge, this is the first attempt of repurposing WPS tracking data to produce
travel time maps. Our contributions are:

We adapt and extend the two most important classes of WPS algorithms (centroid

and fingerprinting) for our setting (WiFi network, outdoors operation).

We experimentally evaluate the optimal parameters of the various classes of WPS

algorithms and identify an optimal solution in terms of accuracy and coverage

under realistic settings.

We adapt an online map-matching algorithm to WPS tracking data as a post-

processing step to improve WPS accuracy.

We adapt a global map-matching algorithm to extract travel time maps from

historic WPS tracking data and compare the results to GPS derived travel time

maps.

We demonstrate that for high sampling frequencies, WPS derived travel times are

comparable to GPS in absolute terms. Further, even for low sampling frequencies,

the results in terms of speed profiles (categories) are useful as well.

The remainder of this paper is structured as follows. Section 2 introduces
techniques for wireless positioning. Section 3 briefly introduces the map-matching
algorithm used for deriving travel times from tracking data. Section 4 gives an
experimental evaluation of WPS techniques and travel times derived from WPS data.
Finally, Section 5 presents our conclusions and directions for future research.

2 Wireless Positioning

Wireless Positioning Systems (WPS) provide a position estimate based on the
radio signals received at a given location (measurement), and a known radio map of
the environment. In the case for 802.11 (WiFi) wireless networks, the measurement

consists of a set of the visible access point ids (BSSID), and their corresponding
received signal strength (RSS"). The measurement is then compared to the radio map
through a distance metric, and a position estimate is calculated.

Different wireless positioning algorithms exist, which imply different forms and
means to create the radio maps, as well as distance metrics to provide an estimate. In
all cases, the radio maps for a given region are produced by training data, typically
collected through wardriving. Wardriving is the process of massively collecting
geocoded RSS measurements when driving through a certain geographic area. For a
given measurement period (e.g., S5sec), we perform a scan of the available WiFi
networks in the environment (BSSID, RSS) and obtain the position of this scan
through GPS.

In this section, we present the outline of two classes of WPS algorithms we
adapted and implemented for our experiments, i.e., centroid and fingerprinting. For
both classes, numerous approaches and variations exist, depending on the wireless
network (e.g., [13, 12, 17, 7, 18]) and environment (e.g., indoors/outdoors [10, 2, 3,
8]). We have either adopted these variations as is, or properly adapted and extended
them to suit our case.

2.1 Centroid

Centroid is the simplest and the fastest method for wireless positioning. In
centroid, the radio map consists of a set of the available APs and their positions, i.e.,
<BSSID, X, Y>. Consequently, centroid depends on having the true locations of the
AP positions. Since this information is practically not available, nor feasible to
produce, we must create the radio map from the training data, essentially estimating
the position of the APs. Therefore, for each AP in the training data, we find all the
positions it was visible, and estimate the AP’s position as the arithmetic mean of these
coordinates. Having established the radio map, a position estimate is provided in a
similar manner. Given a measurement from the environment where certain APs are
visible, we calculate the arithmetic mean of their coordinates, as provided by the radio
map.

In order to improve accuracy when creating the radio map and/or calculating an
estimate, we adopted weighted centroid from [6] and proposed two new heuristics: k-
max and thresholds. Specifically:

Weighted. The simple arithmetic mean is substituted by a weighted arithmetic

mean, where the weight is based on the RSS.

K-max. We apply the arithmetic mean on only the k APs with the lowest RSS (low

RSS values correspond to strong received signal).

Thresholds. We define three thresholds ¢,<¢,<¢t; which split the RSS space in four

regions. If there are APs which fall in the first threshold (RSS<t,), then we use

only them in the arithmetic mean and ignore the rest. If there no APs in the first
threshold, we use the ones in the second (t;<RSS<t,), and so forth. In case there are

APs only in the last threshold (t;<RSS), then the algorithm does not provide an

estimate since we consider the measurement to provide highly inaccurate readings.

! Note that we always refer to the absolute value of RSS.

Consequently, for centroid, there are a total of 16 different combinations of
techniques to create the radio map and to provide an estimate: 4 to create the radio
map, and 4 to provide an estimate. A specific centroid technique will be denoted as
centroid <radio map, estimation>, where radio map and estimation can be one of the
following: arithmetic mean (am), weighted (w), k-max (k=n), and thresholds (¢;-¢,-£3).
For example, centroid <k=2, 60-70-80>, means that the radio map was built with the
k-max technique with k=2, and the estimation is provided with the thresholds
technique with t,=60, t,=70, and t;=80.

2.2 Fingerprinting

Fingerprinting assumes that the APs and associated RSS observed at a particular
location are stable over time. Consequently, a measurement at a given location, i.e.,
the list of visible APs and RSS, can be considered as the unique fingerprint of that
location. Thus, in fingerprinting, the training data themselves comprise the radio map.

To estimate the position, the algorithm calculates the Euclidean distance in the
signal strength space between the current fingerprint and all available fingerprints in
the radio map that contain the same APs. It then selects the k-nearest fingerprints in
terms of distance, and returns as an estimate the arithmetic mean of their coordinates.
This comparison is possible only if the current fingerprint and the fingerprints in the
radio map contain exactly the same APs. Otherwise, calculating their distance in the
Euclidean space is not possible.

However, in realistic conditions the current fingerprint may not contain exactly the
same APs with the ones in the radio map. For example, some of the APs may have
been turned off or removed, new APs may have been deployed, or the network
interface may not provide APs with an RSS below a given threshold (typical behavior
of Windows 802.11 hardware drivers).

To account for this situation, we calculate the distance between the current
fingerprint and the ones in the radio map based on a subset of common APs. In
particular, we extended the algorithm in [6] so that the subset is defined by two
parameters:

I: We compare the current fingerprint with fingerprints that contain at most [less

APs. For example, suppose the WiFi scan <(AP;, RSS;), (AP,, RSS;), (APs,

RSS;)>. For /=1, a fingerprint <x,, v., (AP;, RSS;), (AP,, RSS,)> would be

included in the position estimation, in contrast with <x;, vy, (AP,, RSS,)> which

would be ignored since there are two missing APs.

m: We compare the current fingerprint with fingerprints that contain at most m

more APs. For example, suppose the WiFi scan <AP;, RSS;>. For m=1, the

fingerprint <x,, v,, (AP;, RSS;), (AP,, RSS,), (AP;, RSS;)> would be excluded
from the estimation due to the two extra APs.

Consequently, fingerprinting is modified as follows. The algorithm calculates the
Euclidean distance in the signal strength space between the current fingerprint and all
fingerprints in the radio map that contain at most / less and m more APs. It then
selects the k-nearest fingerprints in terms of distance in the signal space, and returns
as an estimate the arithmetic mean of their coordinates. As a result, there are many
instances of the fingerprinting algorithm based on different parameters of &, I, and m.

During the rest of the paper, we will use the notation fingerprinting <k, I, m> to
denote a specific instance of the fingerprinting algorithm.

3 Map Matching

Deriving travel times from tracking data implies the alignment of the tracking data
with a respective trajectory in the road network, i.e., finding the actual roads the
vehicle has traversed. Now, provided that the tracking data is precise, this task would
be simple. However, tracking data is obtained by sampling a vehicle’s movement,
typically with GPS and in our case with WPS. Unfortunately, both GPS and WPS are
not precise due to the measurement error caused by the limited positioning accuracy,
and the sampling error caused by the sampling rate, i.e., not knowing where the
moving object was in between position samples [14]. Therefore, a processing step is
needed that matches tracking data to the road network. This technique is commonly
referred to as map matching.

Fig. 1. Map-Matching example.

Fig. 2. Sampling error and measurement error.

To illustrate these errors and the map-matching problem in general, Fig.1 gives two
examples of measured positions and the possible trajectory the vehicle could have
taken. Fig. 1a shows the interpolated path in between position samples A and B and

the actual path with respect to the road segment. Further, as evident in Fig.1b, the
positioning error becomes significant when facing several parallel roads close by.
Specifically, in the case of WPS (Fig.2), the measurement error might grow quite
large. This significantly increases the challenge for proper map-matching, since with a
large measurement error, one is presented many alternative paths in the road network
to map the sampled movement to. Thus, we expect that at least minimizing the
sampling error by using high sampling rates will prove to be important.

3.1 Theoretical Considerations

Most map-matching algorithms are tailored towards mapping current positions
onto a vector representation of a road network. Onboard systems for vehicle
navigation utilize, besides continuous positioning, dead reckoning to minimize the
positioning error and to produce accurate positions that can be easily matched to a
road map. However, for the purpose of processing tracking data collected over a
period of time, the entire trajectory, given as a sequence of historic position samples,
needs to be mapped.

The algorithm we utilize in this work is the global map-matching algorithm of [4,
19], which employs the Fréchet distance measure for curves [1]. A popular illustration
of the Fréchet distance is the following. Suppose a person is walking his dog, the
person is walking on the one curve and the dog on the other. Both are allowed to
control their speed but they are not allowed to go backwards. The Fréchet distance of
the curves is the minimal length of a leash that is necessary for both to walk the
curves from beginning to end. Using this distance measure, our global map-matching
algorithm tries to match the tracking data geometry to a respective path in the road
network by comparing it to the shapes of all possible paths in the road network.
Although conceptually quite an elaborate task, this can be accomplished in
O(mnlogmn) time, with m being total number of nodes and edges of the road network
and 7 the size of the tracking data to be matched [4].

The global map-matching algorithm is therefore a shape-matching algorithm that
matches one curve, the tracking data trajectory, to another curve, the road network
path that most closely resembles the tracking trajectory. As such, the algorithm is
predestined for matching historic data.

Consider now the online map matching case, in which tracking data is matched as
it is collected, i.e., in real time. Here, we apply the same global map matching
algorithm, but instead of exploiting the complete trajectory (which is not known), we
take advantage of the available historic data, i.e., the tracking data available so far.
Experimentation showed that typically a trajectory consisting of 10 position samples
collected with a sampling rate of 30s can be matched with the same accuracy as
longer trajectories, i.e., 10 position samples represent a reasonably large enough curve
for the global map-matching algorithm to produce a good quality match when applied
to the online case. Hence, to perform online map matching, we apply the global map
matching algorithm on the trajectory formed by the current position estimate and the 9
last position estimates.

3.2 Deriving Travel Times

Having mapped the tracking data to the road network, travel times are derived by
mapping the travel times contained in the tracking data to the respective portions of
the road network. The map-matching algorithm performs essentially shape matching
and tries to find a path in the road network that most closely resembles the trajectory,
i.e., the tracking data (cf. dotted line in Fig. 4). In the process, it maps all position
samples (circles in Fig. 4) to the road network and all nodes along the corresponding
path to the tracking data trajectory. Since the original tracking data contained the
timestamp they were received, this information is transferred to the map-matched
tracking data along the road network. The former can be seen as an effort to
rediscover where on the road network the position samples would have been
originally recorded. As such, these mappings are the ideal means for assigning travel
times to the respective road network edges. Overall, the approach we employ is to
uniformly map the time recorded between two consecutive position samples (e.g., #;+;
- t;) in Figure 4, to the respective portions of the road network.

road network

e 4
trajectory

Fig. 3. Distance and travel time assignment.

4 Experimental Evaluation

The primary scope of our experimental evaluation is to establish the suitability of
WPS data as a source to provide travel times. First, to provide a complete
examination of the relevant technologies and potential uses, we provide an evaluation
of WPS accuracy and coverage and also introduce map matching as a means to
improve WPS accuracy.

4.1 Experimental setup

The experimentation was carried out in the Zografou neighborhood of Athens,
Greece. The area was selected (i) due its to geographical characteristics (mix of flat
areas and hills), (ii) varying levels of WiFi AP density (0-15 APs/m®), (iii) typical
urban structure with a mix of shops and residential areas, and (iv) fluctuating traffic.

4.1.1 Data Collection

Data was collected through wardriving over a period of two months in an area
covering approximately 100,000m?. For data collection typical road speeds and
driving habits were maintained. Driving speeds varied from Okph (stationary for more
than Smins) to 70kph. Fig. 5 shows a respective map of the Zografou area and the
sampled locations on the road network where at least one WiFi AP was visible.

Our data set consists of records of the form <#id, x, y, t, AP>, where tid is the
unique id of a trajectory, x and y are the GPS coordinates, ¢ is the timestamp of the
measurement, and AP is a list of the APs (BSSID) and their respective received signal
strength (RSS). The sampling rate during data collection (i.e., every when a
measurement is taken from the environment) was Ssec. In total, we collected roughly
200MBs of data, and we divided them (70%-30%) into two separate sets: (a) the
training data, which were used to create the maps for the WPS techniques, and (b) the
testing data, which were used to assess the WPS accuracy and to calculate travel
times.

Concerning the chosen wardriving approach, instead of multiple passes from each
road segment (which may reveal more APs, produce more samples for an AP, etc.),
we performed at most one pass. This implies that the collected data set may be less
complete than it could be, but resembles a realistic large scale mapping effort to
create the radio map of any given region.

The equipment that was used comprised an Intel Core Duo laptop with a single
802.11a/b/g NIC and two Bluetooth GPS devices, all situated in the passenger
compartment. We used Kismet [9] with a set of custom add-ons to extract geocoded
WiFi measurements. All wardriving logs were later offloaded to a PostGIS database.
Our WPS algorithms (centroid, fingerprinting) were developed in C/C++ and the
map-matching algorithm was implemented in Java. Certain auxiliary
processing/visualization tools were developed in PHP, Python, and Java. Accurate
map data for the road network of Zografou were provided by Eratosthenis S.A. The
experiments were executed by three Windows 2000 servers over a period of two
weeks. Visualization of the results was performed with QGIS [15].

Fig. 4. Zografou map and WiFi AP locations.

4.1.2 WPS Feasibility

The following interesting observations can be made with respect to the data. First,
the total number of unique APs discovered was 2,184, and on average we observed 5
APs for each sampled location. Considering the covered geographic area, this yields
2.1 APs per 100m’. Second, in most cases when WiFi was not available, then GPS
was not available as well (e.g., under a bridge, near a large building). Third, almost all
APs were available 24/7. Overall, these facts confirm the increased penetration of
WiFi networks in urban environments and constitute a foundation for the proliferation
of WiFi-based WPS as a ubiquitous and dependable alternative to GPS.

4.2 WPS Positioning Accuracy

4.2.1 WPS accuracy and coverage

The following experimentation evaluates WPS techniques in terms of accuracy and
coverage. In particular, we used our training data to create the radio maps and the
testing data to calculate the position estimates based on these maps. We experimented
with all permutations of means described in Section 2. For each point in the testing
data, the position estimate provided by each WPS algorithm for specific parameter
settings is compared to the respective GPS measurement taken (ground truth).

Table 1 shows the results concerning accuracy using a ranking based on the
average error of the WPS estimates. In addition, for each result its respective coverage
(i.e., the percent of times the technique can provide an answer) is stated. For each
class of WPS algorithms (centroid, fingerprinting) the best three accuracy achieving
parameter settings are presented. What can be observed is that given the right
parameters, fingerprinting achieves the best positioning accuracy (25.24m). However,
the results overall only differ slightly. What is of interest is the respective coverage
that can be achieved with each method. For example, the best performing

fingerprinting method has a coverage of 56%, i.e., the technique cannot provide a
position estimate 44% of the time. This behavior is caused by the WPS algorithms
themselves and by our wardriving approach to collect training data. For example,
centroid<k=1, 60-80-90> provides an estimate based only on APs with RSS below 60.
The estimate will be more accurate because the required RSS threshold is low, but
since this is also highly selective, there are many instances where RSS below 60 is not
available.

Table 1. WPS accuracy compared to GPS

Average Error (m) | Coverage (%)
Centroid <k=1, 60-70-80> 26.61 74
Centroid <k=1, 65-80-80> 26.65 82
Centroid <k=1, 75-85-90> 26.82 64
Fingerprinting <6-1-5> 25.24 56
Fingerprinting <6-1-4> 26.40 54
Fingerprinting <6-1-6> 26.57 56

Table 2 ranks WPS techniques based on their coverage values. As expected, the
techniques producing the best coverage underperform in terms of average error. To
design an actual wireless positioning system one needs to consider this trade-off
between accuracy and coverage, i.e., is providing a more accurate estimate better than
always providing a crude estimate?

Table 2. WPS coverage

Average Error (m) | Coverage (%)
Centroid <k=1, weighted> 35.52 94
Centroid <k=1, 70-80-85> 47.11 93
Centroid <k=1, 65-75-80> 47.15 92
Fingerprinting <6-2-6> 36.45 82
Fingerprinting <2-4-6> 51.53 81
Fingerprinting <6-6-1> 48.93 78

One conclusion to the above question is to provide a Aybrid WPS technique for
centroid and fingerprinting. In particular, we obtain an estimate from the best
performing technique in terms of accuracy, but should the said technique not be
available (coverage), we obtain an estimate from the technique with the best
coverage. These hybrid WPS techniques have high coverage (> 96%) with an
acceptable increase in average error (cf. Table 3).

Table 3. Average error and coverage of the hybrid WPS techniques

Average Error (m) | Coverage (%)
Hybrid Centroid 32.77 99
Hybrid Fingerprinting 28.40 96

Unless stated otherwise, hybrid WPS techniques will be used through the rest of
our experiments, denoted as WPS-C and WPS-F for hybrid centroid and hybrid
fingerprinting respectively.

4.2.2 Map Matching to Improve WPS Accuracy

Map-matching is known as a technique to relate tracking data to a map dataset.
One can also see it as a method for imposing geometric constraints (shapes of paths in
the road network) to tracking data. As such, this technique might be a viable means to
“correct” WPS data and improve its accuracy. In this experiment, we utilize two map-
matching algorithms, a simple one (called naive) that maps position samples to the
closest point on the road network and the online algorithm presented in Section 4.2,
which exploits shape information. To compare the various approaches in terms of
accuracy, we calculated the average error and standard deviation for the complete
WPS dataset with respect to the GPS measurements.

The results are given in Table 4 and confirm the findings in the relevant literature,
with fingerprinting providing more accurate results than centroid. However, note that
in both cases the average error is roughly 30m. Further, while the naive map-matching
algorithm only marginally reduces the average error (~1m), the shape-based map-
matching algorithm reduces the average error by 37% (WPS-C) and 25% (WPS-F).
This happens, because in contrast to a naive map-matching approach, the shape-based
algorithm exploits past WPS estimates to produce a trajectory that best fits the road
network. Hence, an extremely important side-effect of proper map-matching,
stemming from its inherent robustness towards inaccurate data, is the improvement of
the accuracy provided by WPS. Combining WPS with map-matching reduces the
average error of WPS (~20m) very close to the average error of GPS in urban
environments (5-15m). This observation clearly opens the room for more research and
experimentation, since in the WPS literature GPS is always considered as the ground
truth for calculating the average error. Obviously, this is something needed to be
questioned given our findings. Our future work and current experimentation is
focused on exploiting GNSS available in Greece of greater accuracy (<1m), such as
Galileo CS [20] and HEPOS [21].

Table 4. WPS average error and standard deviation.

Avg. Stdev. Avg. .
Avg. Stdev. Error with | with naive | Error with Stdev. with
Error .. mm
(m) (m) naive mm mm mm (m)
(m) (m) (m)
WPS-C 32.77 49.80 31.74 48.34 20.47 19.74
WPS-F 28.40 42.48 28.36 41.68 21.15 22.16

Moreover, we performed a set of experiments to assess the impact of the data
collection speed, and AP density, towards WPS accuracy. In particular, to assess the
impact of the data collection speed (i.e. frequency of collecting measurements from
the environment), we removed records from the collected data to simulate frequencies
ranging from 2Hz to 0,2Hz (Fig.5a). Further, we sampled our entire data set to
randomly remove APs in order to simulate densities up to only 25% of the original
one (Fig.5b). Our results illustrate that centroid is the most robust technique,
maintaining an acceptable average error at all times.

50 80
45 70 -
—~ 40 — € 60
5 ﬁ&‘ : ./ -
P . 5 Centroid
§ a5 — —+— Centroid &5
w ’%,_,/ —e— Fingerprinting y —=— Fingerprinting
g g g
< < 40
30
7
25 30 =
20 20
5 10 15 20 25 30 100% 75% 50% 25%
Measurement Period (s) AP Density
(a) (b)

Fig. 5. Average error dependence from (a) measurement period and (b) AP density.

4.3 Extracting travel-time maps

To establish the feasibility of using WPS data to derive travel times, we compared
the travel times produced from GPS data to the ones produced from WPS data for the
same trajectories. The format of the collected testing data was <tid, x, y, t, AP>,
where tid the trajectory id, x and y the GPS coordinates, ¢ the timestamp of the
measurement, and AP the WiFi-related measurements, i.e., AP BSSIDs and RSS. For
the testing data, WPS-C and WPS-F were used to produce WPS estimates, resulting in
trajectory data of the form of <tid, x, y, t, xc, yc, xf, yf>, where xc, yc, xf, and yf are
the coordinates produced by the centroid and fingerprinting algorithms respectively.
For the three types of trajectory data, GPS, WPS-C, and WPS-F, global map-
matching was applied, and using the approach detailed in Section 3, the respective
travel times were derived for each case. Consequently, for each road segment in our
network, we established three different travel time estimates, (i) GPS, (ii) WPS-C and
(ii)) WPS-F. Versions of the travel time dataset were produced for sampling rates of
5, 10, 20, and 30secs.

4.3.1 Qualitative evaluation
In order to compare the trajectories produced by GPS and WPS position data, we

will define the measures of recall and precision. Let G; ¥ {g}, be the set of vertices
produced by the map-matching algorithm on GPS data, for trajectory i. Also, let
W, 2{w} be the set of vertices produced by the map matching algorithm on WPS data

for the same trajectory. The intersection G; +W, contains the vertices the two sets

have in common. Recall R and precision P can be defined as follows:

G+ G, +W)|
R Tl p T T (1)
Gil i

R indicates the fraction of road segments covered by GPS trajectories that is also
covered by WPS. Ideally, R should be equal to 1, i.e., WPS returns all the road
segments GPS does (but possibly more). Further, P indicates the fraction of road

segments covered by WPS trajectories that is also covered by GPS. Again, we want P
to be equal to 1, i.e., WPS does not produce road segments not produced by GPS.

100%

100%

e T =
] T e
] E] T -
Fi i)] o
90% T diih it fiei bty 90%
i] i £t
Hi il e it
80% {1 it it i i 80%
i it e i o
i il i i
70% {4 feeied Feesd e Fdd 70% H
o o (252 bosy ot o r
] i fised fiied H
oo | EEEES i fie] fiitd . H
60% [z e fiasl el c 60% H
=] i ficed fiied p H H i
T s s et e ki | |a Centro g 4 @ Centroid
& S0% Tpak it i i Finger priti g 0% 1 ingerprinti
'3 frid [o P @ Fingerprinting @ | 0 Fingerprinting
40% |2k fid fiici i T 40% Hi
i FEe e b H
i il i i
30% {5 fieied il fiedh i 30% Hi
i il e i E
o, ki [e Feed o, |
20% {—fi = it e b 20% H
i il e i 1
10% 4 ke [b £ o, Hi
o 4 it fie fiity 10% m
] i ficd fiied H
0%] i fis] fiitd 0% u|
= o
5 10 20 5 10 20 30
Measurement Period (s) Measurement Period (s)

Fig. 6. Recall and precision for the WPS derived trajectories in our entire data set.

In Fig.6, the values of recall and precision for our entire data set using varying
sampling rates are shown. Common to all cases, recall is high, close to 100%. Notice
that recall is optimal for a sampling rate of 10s while precision is best for a sampling
rate of 30s. This was expected, as for low sampling rates, the sampling error
dominates the measurement error in the map matching process. Thus, both WPS and
GPS produce practically the same trajectories.

Fig.7 illustrates the above by giving a sample trajectory that accurately represents
our findings for the entire data set. Fig.7(a) shows raw GPS tracking data while
Fig.7(b) shows the WPS estimates derived by the WPS-C technique. Notice that
although the ‘noise’ in WPS estimates is apparent (with several outliers as well), the
trajectory can easily be distinguished. Fig.7(c),(d) show the produced trajectories after
applying our map matching algorithm using a sampling rate of 30s. Fig. 7(e),(f) show
details of the trajectory, highlighting specific map-matching cases.

(a) GPS data (b) Centroid WPS data

(c) map-matching GPS data (d) map-matching WPS data

(e) detail view of (c) (f) detail view of (d)
Fig. 7. Sample trajectory.

4.3.2 Quantitative Evaluation

Having established how trajectories produced by WPS fare in comparison to GPS,
in the following, we compare the respective travel times derived from these
approaches. Given the set of links for which WPS and GPS derived travel times are
available, we calculated the average error of WPS compared to GPS derived travel
times, as shown in Fig.8. What can be readily observed is that the optimal sampling
period is 10s, with no real difference between the two WPS techniques. For a period
of 30s, the errors are 80.3% (WPS-C) and 125.4% (WPS-F). This could be interpreted
as a serious problem for map matching based on WPS data for lower sampling
frequencies, since most travel time databases are calculated from fleet management
logs with sampling periods of 20-30s.

140.00%

120.00%

100.00%

80.00%

B Centroid
@ Fingerprinting

Avg. Error

60.00%

40.00%

wo (e %:
0.00% = i -

5s 10s 20s

Measurement Period (s)

Fig. 8. Average error of WPS derived travel times compared to GPS derived travel times.

However, for the creation of dynamic road network profiles, travel times are used
to classify road network links. For example, suppose that a road category is defined as
including speeds ranging from 10-20kph. Here two road links with respective travel
times of 10.5 and 19.5kph will be subsumed under the same category. This
quantization is beneficial, because it results to lower storage requirements, faster
route calculation, and routes of similar quality.

90% == 90%
H e
m 70% um
£ e H
| 50% um
= EE 40% EE
% T 30% 1
% .::—FL 20% um H
| ! H:H 10% B r‘ﬂ:ﬁ
(a) (b)
90% 90%
80%
70%
60%
50% T} ;j
40% T} 1
o H
20% T} 1 |
> :4 H T om
R o H m FZHA

(© (d)

Fig. 9. Speed profile matches for GPS and WPS derived travel times, for various sampling
periods: (a) Ssec, (b) 10sec, (c) 20sec, and (d) 30sec.

We experimented with such quantization in travel time speeds and introduced for
our experiments five road categories characterized by the following speeds (in kph):
[0-10), [0-20), [20-30), [40-50), [50,0). We classified all road links based on GPS and
WPS data, and for various sampling frequencies. Further, for each road link in our
network, we compared the classification produced from GPS, WPS-C, and WPS-F.

Our results are shown in Fig. 9. For example, in Fig. 9(a), 75% of the road links are
classified under the same category for WPS-C, compared to GPS. For WPS-F, this
number is close to 90%. From Fig.9, we can also observe that for sampling rates of 5s
and 10s, at least one of the two WPS techniques derives the same road categories for
90% of the road links. As the sampling rate decreases, this percentage is reduced to
roughly 60%, with additional 25% of the road links classified to one category higher
or lower. Therefore, we can conclude that for higher sampling rates, WPS produces
very accurate travel times which are indeed comparable to GPS. For lower sampling
rates (30s) the results are encouraging, since at least 80% of the derived travel times
fall within the same or a directly neighboring category.

What follows in Fig.10 is the actual link classification based on GPS and WPS.
Fig.10 shows the percentage of road links that fall in one of our five categories for
GPS, WPS-C and WPS-F. It is evident that for small and high sampling rates alike, a
WPS derived classification is very similar to a GPS classification.

Matches

3

> R R R NN
AREAREEREARR]]

-

D

R RN

Road profiles Road profiles

(a) (b)
Fig. 10. Road segment classification for (a) Ssec and (b) 30sec

5 Conclusions and Future Work

We have evaluated the use of WPS data as an alternative data source for extracting
travel times for road networks. We adapted and evaluated various classes of the
centroid and fingerprinting WPS algorithms. Further, we applied map matching as a
post processing filter to improve WPS accuracy and demonstrating significant gains.
In addition, we extracted travel times from GPS and WPS data with a map-matching
algorithm. Our evaluation demonstrated that for measurement periods up to 10sec, the
produced travel times are practically identical to the ones derived from GPS data.
Further, when applying a typical speed profile classification on travel times, even for
sampling rates of up to 30sec, the produced travel times are still of respectable
quality. Finally, we showed that through our analysis of WPS data, the distribution of
road segments to speed profiles can be accurately discovered.

Our ongoing work evolves around further exploring and manifesting the benefit
and potential uses of huge amounts of crowd-sourced WPS data. In this respect, our
efforts are focused on three fronts. First, improve the accuracy of WPS techniques by
integrating map matching into the WPS algorithms. Second, explore different uses for
WPS data, such as routing (by fully replacing GPS), and automatic road network

construction. Third, we aim to model and accommodate the inherent inaccuracy of
wireless positioning data sources into spatiotemporal tasks and algorithms.

Acknowledgements

This work was partially supported by the project “TALOS: Task Aware Location
Based Services for Mobile Environments”, funded by the European Community,
Framework Programme 7, Research for the benefit of SMEs. We would like to thank
Dimitris Sacharidis, Kostas Patroumpas, Theodore Dalamagas, and Panagiotis Bouros
for their valuable comments.

References

1. Alt, H., Godau M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geom. Appl. 5, 75-91 (1995)

2. Bahl P., Padmanabhan V.N.: RADAR: An In-Building RF-Based User Location
and Tracking System. In : 9th IEEE Conference on Computer Communications,
pp. 775-784, IEEE Press (2000)

3. Bahl, P., Padmanabhan, V.N., Balachandran, A.: Enhancements to the Radar User
Location and Tracking System. Technical Report, Microsoft Research MSR-TR-
00-12 (2000)

4. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle
tracking data. In: 31st Very Large Data Bases Conference, pp. 853-864, ACM
(2005)

5. Brockfeld, E., Wagner, P., Passfeld, B.: Validating travel times calculated on the
basis of Taxi Floating Car Data with test drives. In: 14th World Congress on
Intelligent Transport Systems (2007)

6. Cheng, Y., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy Characterization for
Metropolitan-scale Wi-Fi Localization. In: 3rd International Conference on Mobile
Systems, Applications, and Services, pp. 233-245, ACM(2005)

7. Chen, M.Y., Sohn, T., Chmelev, D., Hightower, D.H.J., Hughes, J., LaMarca, A.,
Potter, F., Smith, I., Varshavsky, A.: Practical metropolitan-scale positioning for
GSM phones. In: 8th International Conference on Ubiquitous Computing. LNCS,
vol. 4206, pp. 225-242, Springer (2006)

8. Hightower, J., Consolvo, S., LaMarca, A., Smith, 1., Hughes, J.: Learning and
recognizing the places we go. In: 7th International Conference on Ubiquitous
Computing. LNCS, vol. 3660, pp. 105-122, Springer (2005)

9. KISMET, http://www.kismetwireless.net/

10.Krishnan, P., Krishnakumar, A.S., Ju, W., Mallows, C., Ganu, S.: A system for
LEASE: Location estimation assisted by stationary emitters for indoor RF wireless
network. In: 23rd IEEE Conference on Computer Communications, pp. 1001-1011,
(2004)

11.LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, 1., Scott, J., Sohn,
T., Howard, J., Hughes, J., Potter, F., Tabert. J., Powledge. P., Borriello. G.,

Schilit. B.: Place Lab: Device Positioning Using Radio Beacons in the wild. In: 3rd
International Conference on Pervasive Computing. LNCS, vol. 3468, pp. 116-133,
Springer (2005)

12.Laitinen, H., Lahteenmaki. J., Nordstrom. T.: Database correlation method for
GSM location. In Proceedings of the 53rd IEEE Vehicular Technology
Conference, pp. 2504-2508, IEEE Press (2001)

13.0tsason, V., Varshavsky, A., LaMarca, A., Lara, E.D.: Accurate GSM Indoor
Localization, in Proceedings of Ubicomp. LNCS, vol. 3660, pp. 141-158, Springer
(2005)

14 Pfoser, D., Jensen, C.S.: Capturing the Uncertainty of Moving-Object
Representations. In: 6™ International Symposium on Advances in Spatial
Databases. LNCS, vol. 1651, pp. 111-132. Springer (1999)

15.Quantum GIS Project, http://www.qgis.org/

16.Schaefer, R.P., Thiessenhusen, K.U., Wagner, P.: A Traffic Information System by
Means of Real-time Floating-car Data. In : 9th World Congress on Intelligent
Transport Systems (2002)

17.Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, I.,
Consolvo, S., Hightower, J., Griswold, W.G., Lara, E.D.: Mobility Detection Using
Everyday GSM Traces. In: 8th International Conference on Ubiquitous
Computing. LNCS, vol. 4206, pp. 212-224, Springer (2006)

18.Varshavsky, A., Chen, M., Lara, E.D., Froehlich, J., Hachnel, D., Hightower, J.,
LaMarca, A., Potter, F., Sohn, T., Tang, K., Smith, I.: Are GSM phones THE
solution for localization?. In: 7th IEEE Workshop on Mobile Computing Systems
and Applications, pp. 20-28, IEEE Press (2006)

19.Wenk, C., Salas, R., Pfoser, D.: Addressing the Need for Map-Matching Speed:
Localizing Global Curve-Matching Algorithms. In: 19th Scientific and Statistical
Database Management Conference, pp. 379-388 (2006)

20.European Space Agensy - Galileo, http://www.esa.int/esaNA/galileo.html

21.Hellenic Positioning System, http://www.hepos.gr/

